A sampling method for improving the representation of spatially varying precipitation and soil moisture using the Simple Biosphere Model

نویسندگان

  • Isaac D. Medina
  • A. Scott Denning
  • Ian T. Baker
  • Jorge A. Ramirez
  • David A. Randall
چکیده

[1] Representing spatially varying precipitation for current grid length scales used in General Circulation Models (GCMs) is a continuing challenge. Furthermore, to fully capture the hydrologic effects of nonuniform precipitation, a representation of soil moisture heterogeneity and distribution of spatially varying precipitation must exist within the same framework. For this study, the explicit and sampling methods of Sellers et al. (2007) are tested off-line using the Simple Biosphere Model (SiB3) in an arid, semiarid, and wet site, and are numerically compared to the bulk method, which is currently used in GCMs. To carry out the numerical experiments, an arbitrary grid area was defined by (1) a single instance of SiB3 (bulk method), (2) 100 instances of SiB3 (explicit method), and (3) less than 100 instances of SiB3 (sampling method). Precipitation was randomly distributed over fractions of the grid area for the explicit and sampling methods, while the standard SiB3 exponential distribution relating precipitation intensity to the grid area wet fraction was used in the bulk method. Comparing the sampling and bulk method to the explicit method indicates that 10 instances of SiB3 in the sampling method better captures the spatial variability in soil moisture and grid area flux calculations produced by the explicit method, and deals realistically with spatially varying precipitation at little additional computational cost to the bulk method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thesis Applying Two Binned Methods to the Simple Biosphere Model (sib) for Improving the Representation of Spatially Varying Precipitation and Soil Wetness

Representing subgrid-scale variability is a continuing challenge for modelers, but is crucial for accurately calculating the exchanges of energy, moisture, and momentum between the land surface and atmospheric boundary layer. Soil wetness is highly spatially variable and difficult to resolve at grid length scales (~100 km) used in General Circulation Models (GCMs). Currently, GCMs use an area a...

متن کامل

Improving the clay, silt and sand of soil prediction by removing the influence of moisture on reflectance using EPO

Moisture is one of the most important factors that affects soil reflectance spectra. Time and spatial variability of soil moisture leads to reducing the capability of spectroscopy in soil properties estimation. Developing a method that could lessen the effect of moisture on soil properly prediction using spectrometry, is necessary. This paper utilises an external parameter orthogonalisation (EP...

متن کامل

Forecasting of Groundwater Table and Water Budget under Different Drought Scenarios using MODFLOW Model (Case Study: Garbaygan Plain, Fars Province, Iran)

Groundwater drought is a natural hazard that develops when groundwater systems are affected by climatical drought, when climatical drought occures, first groundwater recharge, later groundwater levels and groundwater discharge decrease. The origin of drought is a deficit in precipitation and that takes place in all the elements that comprise the hydrological cycle (flow in the rivers, soil mois...

متن کامل

The Impact of rainwater harvesting systems in increasing the soil moisture in soil profile of Ahram rainfed gardens in Bushehr province

Integrated methods to store precipitation when it is not sufficient to cause floods will provide suitable conditions for improving the vegetation of floodplains. In this study, the application of rainwater harvesting systems in combination with the performance of flood distribution networks and its impact on increasing the moisture storage in soil profile were investigated. Therefore, while usi...

متن کامل

روش جدید برآورد پارامترهای هیدرولیکی با اندازه‌گیری رطوبت خاک در مزرعه

In this study, the values of moisture and soil temperature were estimated at different depths and times under unsteady conditions by solving the Richards’ equation in an explicit finite difference method provided in Visual Studio C#. For the estimation of soil hydraulic parameters, including av and nv (coefficients of van Genuchten’s equation) and Ks (saturated hydraulic conductivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014